
Journal of Statistical Physics, Vol. 47, Nos. 3/4, 1987 

One-Dimensional Model of the Quasierystalline Alloy 

S. E. Burkov ~ 

Received September 22, 1986 

A one-dimensional chain of atoms of two types is investigated. It is proven 
exactly for the model of attracting hard spheres that if the ratio of the numbers 
of atoms of the two types is irrational, then the state of absolutely minimal 
energy is quasicrystalline. The quasicrystalline state is also investigated in the 
case of the Lennard-Jones interatomic potential. All the microscopic values 
(interatomic spacing, electronic density, etc.) are shown to be quasiperiodic 
functions varying on Cantor sets. Diffraction patterns, electronic properties, and 
vibrational spectra are also discussed. 

KEY WORDS:  Quasicrystals; incommensurability; localization, ground 
state. 

1. I N T R O D U C T I O N  

Recently systems with quasicrystalline order have become the object of 
keen interest. This interest has arisen from the experimental observation 
that the A1-Mn alloy possesses icosahedral symmetry, a) The icosahedral 
point group is known to be incompatible with crystalline order, but, as 
shown by Kalugin et  al. (2~ and Levine and Steinhardt, ~31 it is quite com- 
patible with quasicrystalline order. In .the quasicrystalline phase, atoms are 
positioned quasiperiodically with six independent (incommensurate) 
periods. Despite the lack of crystal structure, a quasicrystal scatters waves 
coherently. According to the K K L  theory, (2/ a three-dimensional 
quasicrystal is a projection of the six-dimensional cubic crystal onto our 
3D space. The projector should be chosen so that it projects a 6D cube 
onto a 3D icosahedron. Below we shall briefly review the main features of 
the K K L  theory, but since in this paper we restrict ourselves to the 1D 
model, we consider a one-dimensional version of the K K L  theory. 
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Consider a 2D space R 2 and a simple square lattice in it (the lattice 
constant is unity). Present N2 as ~1 | N*, where ~ is a physical space (the 
x axis in Fig. 1) and N* is an auxiliary nonphysical space (the y axis). 
Note that the y coordinate has no physical meaning. The slope w of the 
x axis with respect to the Xl axis is equal to the golden mean: 

w = ( ,~ /5 -  1)/2 

Consider a "tube" in ~2 of the width D (Fig. 1) and then project all the 
points of the square lattice belonging to the tube onto the x axis. This 
procedure creates a sequence {x, )  of real numbers (x ,_  1 < x,  < x ,+  1). Put 
the atoms just at the points xn. This atomic configuration is not periodic 
(because w is irrational), but, as shown in Ref. 2, it gives rise to b-function 
diffraction spots. 

The K K L  theory works so well that we are not questioning its utility. 
But questions inevitably arise: 

1. If one constructs the quasicrystalline state of an alloy, it is not suf- 
ficient to know the sequence {x,}. One must know what sort of atom is 
situated at the point xn. The above procedure does not provide this infor- 
mation. Moreover, this procedure also seems to be applicable to pure 
substances. So, is the K K L  theory the theory of an alloy, and if so, then 
what sorts of atoms should be placed at the points xn ? 

Fig. 1. "Tube rule" of the original 1D KKL theory. Circles on the x axis indicate atomic 
positions {x.} [tg 0 = ( ~ g -  1)/2]. 
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2. Why do atoms prefer to be just at the points xn? Is this con- 
figuration stable? Is it a local minimum of the free energy or is it a ground 
state? 

3. Note that the tube width D is not specified. The theory does not 
gives not a unique sequence {xn}, but a family of nonequivalent sequences 
{x~} parametrized by D. Do all these sequences represent quasicrystalline 
states of real substances? This is not so. The width D should be specified. 
This can be done by using some "common sense" speculations, but this 
choice is beyond the framework of the K K L  theory. For instance, one can 
require the K K L  sequence to be identical to the Penrose tiling. (4~ This is so 
if and only if 

D = (1 -t- w)/(1 + w2) 1/z (I) 

So, if we trust the harmony of nature, we must put D equal to 
(w+ 1)/(w2 + 1) 1/2. But is it possible to prove Eq. (1)? 

4. The K K L  theory predicts two Goldstone modes. The second, 
phason mode is due to the shift of the tube in the y direction. What type of 
atomic displacement is associated with this shift? 

5. The configuration of atoms located at the points {xn} is irregular. 
It is likely to be unstable because the net force acting on some atom from 
all neighbors is not zero. Thus, there must be at least small deviations of 
atoms from the points x, .  What are they equal to? Do they affect the 
diffraction patterns, electronic density, and phonon spectrum calculated in 
the framework of the K K L  theory? 

The aim of this paper is to answer these questions. However, we have 
done so in the one-dimensional case only. The above five questions are 
answered as follows. 

1. The K K L  theory predicts correctly the atomic coordinates of an 
alloy consisting of hard spheres of two types A and B. The long-range 
interatomic interactions are indispensable. The theory cannot be applied to 
pure substances. 

2, 3. Under some constraints the ground state of a hard-sphere chain 
is the state obtained by means of the K K L  tube of width D given by 
formula (1). A tube shift along the y axis does not change the energy. 

4. The tube shift corresponds to permutations A ~-~ B in some AB or 
BA pairs of neighboring atoms (e.g., BABAAB ~-~ BAABAB). Phasons are 
pinned due to the discreteness of the chain (as in the Frenkel-Kontorova 
model(5,6)). 

5. Small deviations from the points take place. They are due to the 
fact that real atoms are not hard spheres. They do not affect diffraction 
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spectra, but they are likely to change drastically localization properties of 
electron wave functions and the phonon spectrum. 

Now we introduce the 1D model and formulate the problem. Consider 
a chain of atoms of two types: A and B. The concentrations of atoms are 
supposed to be fixed: 

(9 = lim ( N A / N ) ,  N = N A A- N B 
N~o~ 

w = lim ( N A / N B ) ,  ~o = 1/(1 + w) 
N ~  

(2) 

where NA and NB are the numbers of atoms A and B in the chain; we put 
N A ~> N B. The temperature is put equal to zero. Since we neglect the kinetic 
energy and all types of fluctuations, the state is characterized by atomic 
coordinates and by the potential energy of interatomic interactions. Along 
with atomic coordinates {xn} one must specify what sorts of atoms (A or 
B) are situated at the points {xn}. It is convenient to do this by introduc- 
ing two types of variables an and xn. The former are symbolic and take two 
values: A and B. A sequence of symbols {an} (e.g ..... ABAABABAA...) gives 
the order of alternation of atoms A and B in the chain. The sequence {x,} 
gives the coordinates of the centers of atoms (xn l < X ,  <x,,+~). The 
energy is 

1 ~ U~,oj(xi_xj) (3) 
~ =2i, j=l 

where the three functions UAA(X), UBB(X), and UAB(X) are long-range 
interatomic potentials (Fig. 2). We want to find the states ({an}; {xn}) 
providing local and absolute minima of the energy (3) for the limit N ~  
under the constraint of fixed concentration (9 [Eq. (2)]. To find the 
ground state we shall use a two-stage procedure. First, we fix an arbitrary 
sequence of symbols {an} and find the coordinates {xn} by minimizing the 
energy (3) for given {an}. Along with {x,} one finds the energy 

~({an})  =rain ovt~({an }; {xn}) 
{x.} 

Second, one must find an absolute minimum of ~({~rn}). 
This paper is organized as follows. Section 2 is a survey of 

mathematical properties of a "tube" atomic configuration (Fig. 1). Most of 
the results have been obtained previously by different authors in different 
papers in connection with different physical problems. Here we bring them 
together and reformulate them in terms of a quasierystalline alloy. 
Section 3 is devoted to the exact solution of a particular version of the 
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Fig. 2. Interatomic potentials for an alloy of A and B atoms. 

present model, namely, atoms are supposed to be attracting hard spheres. 
We prove a theorem stating that under some conditions a quasicrystalline 
state is a ground state. Some physical quantities are calculated in the 
framework of the hard-sphere model. Section 4 describes the general case. 
Some physical quantities are calculated for the quasicrystalline state, and 
are shown to be quasiperiodic. The quasicrystalline state gives at least a 
local energy minimum. We cannot answer the question of whether the 
quasicrystal is a ground state. Nevertheless, we conjecture that under some 
conditions the quasicrystal may be a ground state. Some physical 
arguments for this conjecture are given. Illustrative computer calculations 
have been carried out (the interatomic potential is taken in the Lennard- 
Jones form). Adequate agreement with analytical predictions is achieved. 

2. " T U B E "  C O N F I G U R A T I O N  

In this section we deal only with symbolic sequences {a,}. To 
distinguish between the two sorts of variables, we shall use the term 
"configuration of atoms" to mean a sequence {o-n} (e.g., ...ABBABAB...). 
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The term "state" will be used in connection with a pair of sequences 
({a,};  {x=}). It is convenient to represent sequences {a=} by broken lines 
in the plane (Fig. 3). A horizontal unit interval represents an A atom, a 
vertical one a B atom. So, each symbolic sequence {crn} is represented by 
an upward-right-directed path in Z 2. In this language the condition of fixed 
concentration is the condition of fixed average slope: tg 0 = w. Note that a 
square lattice is used here only to find an order of alternation of A and B 
atoms, but not the atomic coordinates x ,  (as in the K K L  theory). Besides, 
in this scheme an atom is represented by a bond of the lattice, whereas in 
the K K L  procedure it corresponds to a site. 

We fix the concentration w and introduce a new frame reference so 
that the x axis has the slope th 0 =  w (Fig. 4). Consider an arbitrary 
straight line with the same slope: y = y , .  Now we introduce a broken line 
closest to the straight line y =  y ,  (Fig. 4). More exactly, we define two 
modifications of the closest broken lines. The broken line of the type " + "  is 
a path on the square lattice connecting the sites satisfying the condition 
y>~ y , ,  i.e., if a site lies on the line y =  y , ,  the " + "  broken line passes 
through this site. The " - "  broken line is generated by the condition 
y > y , ,  i.e., it does not have common points with the straight line y = y ,  
(Fig. 5). 

D e f i n i t i o n  1. A "tube configuration" (of concentration w) is an 
atomic configuration {an} represented by the " + "  or " - "  broken line 
closest to the line y = y , .  
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Fig. 3. Correspondence between atomic configurations {a.} and path on a square lattice: 
path 1 ~ BABABABA...; path 2 ~-> AAAABABA...; w = th 0 = 10/13. The path shown by the 
dashed line is illegal. 
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Tubular atomic configuration. The path in Z 2 indicates only the order of alternation 
of A and B atoms. 

Assert ion  1. A " + "  broken line closest to the staight line y = y ,  
lies in the "tube" 

y,<~ y< y+ D (4) 

where the tube width D is given by Eq. (1). In addition, every site of the 
square lattice belonging to the tube (4) lies on the above closest staight 
line. In the case of the " - "  broken line, Eq. (4) should be slightly modified. 

Fig. 5. Localized region where " + "  and " - "  tubular configurations do not coincide. 
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Assertion 1 explains the use of the term "tube configuration." The 
proof  is rather trivial. (1's'9) Note that D = (w + 1 )/(w 2 + 1 )1/2 = sin 0 + cos 0, 
where tg 0 = w. This means that a tube of this width can be obtained if a 
unit square is pulled along the line y = y , .  Since an arbitrary unit square 
on the plane contains a unique point of Z 2, all the ~2 points of the tube 
give rise to an upward-right-directed path lying in the tube. And this path 
is obviously the closest one to the line y = y , .  

There are many tube configurations even at the fixed slope w; they are 
represented by tubes with different y , .  A given straight line y =  y ,  
generates a unique " + "  broken line and a unique " - "  one. So, every y ,  
gives rise to one or two tube configurations ( " + "  and " - "  broken lines 
may coincide). But a given tube configuration (TC) can be generated by an 
infinite number  of lines y = y , .  Actually, the change y ,  ~ y ,  + D does not 
affect the atomic configuration {or,}. This means that all the TCs can be 
generated by the lines y =  y , ,  where y ,  e [0, D). For this reason we 
introduce a parameter  

,6, 

(the points 0 and 1 of the circle of unit length S 1 are set to be identical). 
In general, " + "  and " - "  broken lines do not coincide, generating 

two different TCs. We want to find all c~ giving rise to two different TCs. 
Bearing in mind Eq. (6), we shall search for y ,  of this type [ y ,  e [0, D)] .  
It is easy to see that two TCs do not coincide if and only if the line y = y ,  
contains at least one site of the square lattice (Fig. 5). Therefore we must 
find all y , ~  [-0, D) that are projected from lattice sites. They can be 
represented as 

y ,  = --rt I sin 0 + n2 cos 0, tg 0 = w 

where ( n l ;  n 2 ) ~ l  2 lies in the tube 0~< y ,  < D .  This formula is not too 
useful because of the two nonindependent integers nl and n2. Introducing a 
number n = n~ + n2, we see that when n2 changes by 1, n also changes by 1 
and y ,  changes by cos 0. When nl changes by 1, y ,  changes by - s i n  0. 
Substituting D = sin 0 + cos 0 into Eq. (6), we see that a change of n2 by 1 
gives rise to the change c~--, ~ + cos 0/(sin 0 + c o s  0), and a change of n~ 
yields c~ --* ~ - sin 0/(sin 0 + cos 0). Note that 

cos 0/(sin 0 + cos 0) = - s i n  0/(sin 0 + cos 0) (rood 1 ) 

So, 

~' = ~ + cos 0/(sin 0 + cos 0) (rood 1 ) 
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for n ' =  n + 1. Substituting tg 0 = w into this formula, we have finally the 
following assertion: 

The parameter e gives rise to two different tube configurations ( " + "  
and " - " )  if and only if 

~ = nco(mod 1), co = 1/(1 + w), n e Z  (7) 

If c~ does not belong to the set (7), a tube configuration is unique. 
Now consider how variation of c~ affects the atomic configuration. 

First consider the case of rational w =  p/q. The atomic configuration is 
periodic; a unit cell contains p +  q atoms. The lattice sites (n~; n2) and 
(nl + q; n2 + p) are projected onto the same point of the y axis, so the set 
(7) consists of p+q points only; they are situated on the circle S ~ 
equidistantly. When c~ varies between two neighboring points (7), the tube 
boundaries are shifted in the y direction, but they do not intersect any 
lattice site, and therefore the configuration is unchanged. When c~ passes 
through one of the points (7), the TC varies abruptly from " - "  to " + "  
type. These two TCs differ only by one permutation A ~  B per period 
(Figs. 4 and 5). Thus, there are only p + q tube configurations {a,,}. If w is 
irrational, the set (7) is everywhere dense in S 1. The points (7) are in some 
sense discontinuity points of the mapping c ~ T C ( c  0. When c~ passes 
through them, the TC varies abruptly from " - "  to " + "  type. The " + "  and 
" - "  TCs differ by one A~-~ B permutation only. In general, the change 

~ c~+& generates an infinite number of permutations A ~ B .  The 
distances between permuted pairs AB tends to infinity when 6c~ ~ 0. So, an 
infinitesimal change of c~ generates a chain of distantly spaced local defects 
(permutations in AB pairs). Thus, in the irrational case there is a 
continuum of tube configurations {an} parametrized by c~. 

Although the sequences {an} obtained by different c~ are different, 
some of them differ from each other only by renumbering n ~ n + m. Such 
atomic configurations are physically equivalent. In fact 

{a;+m} = {a~'}, :~' = ~ +men (rood 1) (8) 

In the case of rational w we have immediately that all p +  q TCs are 
physically equivalent. In the case of irrational w the TC(c 0 is equivalent to 
the TC(c() only if ~ ' = ~ + m c o ( m o d l ) .  So, there is a continuum of 
physically different tube configurations. 

Definition 1 and Assertion 1 give two equivalent ways to describe a 
TC. There are other ways. The lattice sites in the tube (4) or (5) can be 
numbered by two nonindependent integers (nl ;n2) or by one integer 
n = n l  +n2. The relation between n and (nl;n2) is given by the following 
result: 
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Asser t ion  2. Consider a broken line in the tube (4). For  any 
(n~;n2) ~ 7/2 belonging to the tube, put 

n ~ n l  -~/~/2 

Then 
nl = Int(con + c~), n2 = n - Int(a)n + e) (9) 

For  the tube (5), Int(x) in Eq. (9) should be substituted by - I n t ( - x ) -  1. 
Although a lattice site corresponds to a bond between two neigh- 

boring atoms, we can number  atoms by the same integer n = nl + n2. We 
put that the nth bond connects the nth and the (n + 1)th atoms�9 In this way 
the atoms may be numbered by two integers n 1 and n 2 as well as by 
n = n l  +n  2 [Eq. (9)]. 

A s s e r t i o n  3. Consider a broken line in the tube (4). Then: 

1. o-n = A iff (nl, n2) e 772 corresponds to the subtube 

y,<<. y <  y ,  +ooD 

and an = B iff (nl, n2) ~ Z 2 corresponds to the subtube 

y ,  +~oD<~ y <  y ,  + D 

where (n l, na) is connected with n by Eq. (9). 

2. ~rn = a(nco + e ) 
where 

A, t~ [0, co) (10) 
a ( t ) =  B, t e  leo, 1) 

A fourth method (~(>12) exploits the continued fraction expansion of the 
concentration co: 

1 

1 

1 
S 1% 

$2 + 

1-+ 

1 + - -  
S. + ' "  

: {1, S1,  32,..�9 , S . . . . .  } (11)  

The continued fraction is finite if co is rational; it is infinite if co is 
irrational3 TM To obtain the TC(m, e) by this method, we first need to 
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represent the parameter c~ as some series analogous to the usual decimal 
fraction, but co should be used instead of 1/10. Define 

O'n= { Sn' Sn+l, '"} , An:  h O'n (12) 
j=0 

where ~n is a continued fraction obtained by deleting So, $1, $2 ..... Sn_ 1 in 
E q . ( l l )  {e.g., ao=co,  o-l=w, ~2=1/[S2+1/ (S3+. . . ) ]  .... }. Since 
0 < an < 1 for all n, 2n ~ 0 as n -~ oo. The numbers 2n describe the accuracy 
of the approximation of co by truncated continued fractions c% = p~/Q,,,(~3~ 

P . - c o Q n  = ( - 1 ) n , i ~ + ,  

It follows directly from the definition (12) that 

a n + l = c r n l - S n ,  2~+1=2 .  1-Sn2 .  (13) 

The representation of a parameter e is: 

1. If co is rational and ~ = mco(mod 1), m e Z, then 

k 
cr y, (-1)~C~)o~ (14) 

n=0 

where 2, is given by Eq. (12), k is the number of stories of the continued 
fraction (14), and the C. are nonnegative integers: 

C o = l ,  0 ~ C I ~ S  1 

O<~C.<.S~ if C._1=0 (15) 

O<.C,<.S~-I  if C,_~ > 0  

for n ~> 2. We write 

O~ = 1C1C2... CkO00... 

2. If co is irrational, then for any c~ e S ~ 

c~= ~. ( - -1)~C.2~ 
~=o (16) 

g =  1C1C2 ' "  CnCn+l.., 

where C, may take values in the set defined by (15). 
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3. If e) is irrational, then: 

(i) If ~ = mo) (mod 1), m e Z, m > 0, then 

= 1C1 C2"" Cj000... (17) 

where C~, C2 ..... Cj are unique. 

(ii) If ~=m~o(mod 1), m e Z ,  m~<0, then there are two sequences 
{C + } and {C~-} such that 

~ =  ~. ( - 1 1 " C + 2 ~ =  ~ ( - 1 ) ' C ; 2 .  (18) 
n~O 17=0 

where 

or  

{On + = {1, C 1 ..... C2k,  (S2k+ ~ -  1), 0, $2~+3,0,...} 
{ C ;  ~- {1, C1,... , (C2k-]- 1), 0, 32k+2  , 0, 82k+4  .... } 

{ C + = {1,  C 1 ..... C2k , C2k+ l  , O, $2k+3 , 0,...} 

{C;  = {1, Ca,.., C2k, (C2~- 1), (32~+2- 1), 0, 82~+4,...} 

[Equation (18) is an analogue of the equality 0.9999 . . . .  1.000... for decimal 
fractions. ] 

(iii) I f ~ # m ( o ( m o d  1), m~Y, then 

= 1 C 1 C 2 . . . C n C n + I . . .  

where the sequence {Cn} is unique and consists of an infinite number of 
terms. 

Tubular configurations should be constructed of clusters of finite size. 
The smallest one consists of one A atom. We denote it as ~b o. The next 
cluster ~1 consists of one B atom and $1 A atoms. ~2 is constructed of one 
cluster ~b o and $2 clusters ~bl, etc. Generally, ~bn is constructed of one r 2 
and Sn clusters ~b n i (Fig. 6). ~bn consists of pn B atoms and qn A atoms, 
where 

pn/(p,+qn)=P,/Qn=(on= {1, S, ..... S,} 

is a truncated continued fraction (11). The infinite sequence {an} of finite 
clusters ~b,, is obtained as n --+ co. We construct the left- and the right-hand 
parts of {a, } separately. Denote a sequence {o, I n > 0 } as TC(o); u;.~ R) 
and {or.In ~<0} as YC(co; ~;J~ L), where f =  _+1 labels " + "  or " - -"  TC 
(Definition 1). 
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Fig. 6. Three steps or the recurrence procedure (19) for e)= (17 . ~ +  7)/(22. .f2+ 9)~ 

{1, 3, 2, 2,...}, ~ = (9 x/2 + 4)/(22 x/2 + 9 )=  1210 .... 

A s s e r t i o n  4. 
represented by Eqs. (14) and (15), then TC is periodic: 

TO(e); c~; ( -  1) k+ *; R)  -- r162162 

TC(co; c~; ( - 1 )k; R) = TC(oj; c~ + ( - 1 )k 2k; ( - 1 )k + 1; R) 

where Ck is given by the following recurrence procedure:  

r = A ,  r = A A . . . A  B A A . . . A  
St  -- C1 Cj 

S . -  C. C,, 

If c~ e (me); me) + 2k) , m e 27, then 

(i) If e) is rat ional and ~ = m c o ( m o d  1), m e Z ,  is 

2 ~ n 4 k  
(19) 

TC(e); c~; + 1; R) = TC(co; e; - 1, R) = TC(e); me); + 1; R) 

The left-hand TC(oJ; c~; f ;  L)  is given by 

YC(e); ~; f ;  L) = TC(e); 1 - c~; -J~ R) 
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(ii) If co is irrational,  then: 

(a) If c~r  1), r n e Z ,  is represented by Eqs. (15) and (16), 
then 

TC(co; c~; + 1; R) = TC(co; ~; - 1; R) = ~b~ 

where ~b n are given by the recurrence procedure  (19). The left-hand par t  is 

TC(co; ~; + 1; L)  = TC(co; c~; - 1; L) 

= TC(co; 1 - c~; + 1; R) = TC(co; 1 - ~; - 1; R) 

(b) If c~=mco(mod 1), rn62_, m<~O, is represented by Eq. (18), then 
TC(co; e; + 1; R) is given by (19) with Cn = C~+; TC(co; e; - 1; R) is given 
by (19) with Cn = C~-. The representat ion of 1 -c~ is unique [Eq. (17)] and 
the left-hand part  of the TC is given by 

TC(co; cq + 1; L) = TC(co; c~; - 1; L)  

= TC(co; 1-c~; + 1; R) =TC(co;  l - a ;  - 1 ; R )  

(c) If e = r n t o ( m o d  1), m e Z ,  m > 0 ,  is represented by Eq. (17), then 

TC(co; ct; + 1; R) = TC(co; ct; - 1; R) = q~o~ 

TC(co; c~; J~ L)  = TC(co; 1 - c~; - j~  R) 

where 

1 -- cr = - m c o ( m o d  1 ) = m'co(mod 1 ), m' < 0 

C o r o l l a r y  1. If co = ( , J 5 -  1)/2 = {1, 1, 1, 1,...}, then TC is given by 
the recurrence procedure  (19) where all Sn = 1 and 

0~= 1C1C2-- -CnCn+l . . .  , Cn=O;  l 

is the Fibonacci  code, (13) 

~ =  ~ ( - -1)nCnco n+l 
n = O  

Coro l l a ry  2. If co= ( x / 5 - 1 ) / 2  and c~=co, 
TC(co; co; + 1; R) = TC(co; co; - 1; R) is a Penrose sequence (4) 

then 

ABAABABAABAAB... (20) 

A tubular  configurat ion has one more  interesting property,  namely, it 
is a configurat ion where A and B atoms are mixed as homogeneously  as 
possible(14): 
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Assert ion 5. For any tubular configuration the number of A 
atoms between every two successive B atoms is only Int(1/w) or 
Int(1/w) + 1. Moreover, the number of A atoms between the n2th B atom 
and the (n2 + m)th B atom is only Int(m/w) or Int(m/w) + 1. 

So, we have described four methods to find a tubular configuration 
[the closest broken line; broken line in a tube; a quasiperiodic sequence 
cr ,=a(nco+e) ;  and a recurrence procedure exploiting the continued 
fraction expansion of co]. Although all these methods give the same 
configuration, it is worth studying them all because the four methods are 
used in different applications. 

3. A T T R A C T I N G  H A R D  SPHERES 

Let A and B atoms be hard spheres of diameter a and b, respectively. 
The interatomic potentials UAA(X), UBB(X), and UA~(X) are shown in 
Fig. 7. We search for ground states by a two-stage energy minimization: 

I 

3e 

Y 
Fig. 7. Interatomic potential for the hard-sphere model. 
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first we find {x,} for the given order of alternation of A and B atoms {an}, 
and second we find { a .  } minimizing the energy (3) when the concentration 
co is fixed. The first stage is trivial: 

A s s o r t i o n  6. For any given configuration of hard spheres the 
energy (3) takes its minimal value when there are no empty spaces between 
neighboring atoms. Thus, the distances between atoms are, for AA, a; for 
BB, b; and for AB, (a + b)/2. 

The second stage can be carried out by introducing an effective 
interaction of steps in the broken lines in Fig. 3 and reducing the problem 
to the 1D lattice gas of steps. The lattice gas problem has been solved 
previously.(W.14 17) 

P r o p o s i t i o n  7. Denote 

J ( n  1 ; n 2 )  = U B B ( n  I a + n2b ) 

+ 2  ~ [ U A B ( n l a + n 2 b + l + n a )  
n=O  

- U A ~ ( n l a + n 2 b + l - b + n a ) ]  

+ ~ n [ U A A ( n l a + n 2 b + b + n a ) - - 2 U A A ( n l a + n 2 b + n a )  
n = l  

-{- UAA(n 1 a + n2b - b + na) ] (21) 

n l ,nz ,  n e Z ,  nl>-O, n2~>l, l = ( a + b ) / 2  

If J(nl;n2) satisfies the conditions 

0 < J(nl;  n2) < C/n~ (22a) 

for n i --+ oo, c > 0, 7 > 1 ; and 

J(nl + 1; n2) - 2J(nl ; n2) + J(n2 - 1; n2) 

= U B B ( n i a + n 2 b + a ) - - 2 U B B ( n l a + n e b ) +  UBB(nla+n2b--a)  

+ 2[UAB(nla + nzb § l - - a ) - -  UAB(nla + nzb + I) 

+ U A B ( n l a + n 2 b - - b + l  ) -  U A B ( n l a + n 2 b - b + l - a ) ]  

+ UAA(nl a + n2b + b) - 2UAA(nl a + nzb ) + UAA(nla + nzb -- b) > 0 

(22b) 
nl~>l, n2~>l 
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then all tubular configurations (with the same concentration co) have the 
same energy and this value of the energy is an absolute minimum of 
[Eq. (31)] under the constraint of fixed concentration co. 

It should be noted that if 

UAA(X) ~ CAA. CBB. CAB 
x~ UBr~(x) ~ x~ UAB(X) ~ X~ 

as x ~ 0% then 

C 1 
J ( n l ; n 2 ) ~ a 2 ( n l a ) r ,  nl ~ 

C = --(aZCBB -- 2abCAB + b2CAA) 

So, in the case of large n~, condition (22b) is reduced to 

a2CBB -- 2abCAB + b2CAA < 0 

The function J (n l ;n2 )  is an effective potential describing the repulsion of 
two steps of the broken line (Fig. 3) separated by n~ horizontal and n2 ver- 
tical intervals. The condition (22b) is a well-known convexity condition for 
the lattice gas. Note that J(n 1 ; n2) must be strictly convex, and if U(x)  = 0 
for x > x , ,  then condition (22b) is not fulfilled. So, a tubular configuration 
becomes a ground state in the case of a long-range interaction only. From 
Assertions 6 and 7, we have complete information about ground states: 

Asser t ion  8. If (22) is fulfilled, then the ground state of the chain 
is described by the two sequences {a,}, {x,}: 

(i) {~r,} is a tubular configuration TC(co; ~), and (ii) 

x , , = n l a + n 2 b + � 8 9  ~ (23) 

nj = Int(con + ~), n 2 = n -- lnt(con + ~) 

h(t)=Sa,a t e  [0;co) h~= h(con + ~), 
[b, t ~ [co; l) 

The integers nl and n2 in Eq. (23) are coordinates of the sites of the 
square latiice lying on the broken line representing a tubular configuration 
(Fig. 4). In Eq. (23) we have used Assertion 2 to obtain (n~; n2) and Asser- 
tion 3 to obtain h,. One can use the other three methods of Section 2 as 
well. Assertion 8 states that the ground states are parametrized by two real 
numbers ~ and/L The former describes local rearrangements of atoms, and 
the latter describes the translation of the chain as a whole. If we deal with a 

822/47/3-4-9 
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crystal (co is rational), then the ground state is once continuously 
degenerate (parameter/~). A change of 7 results in renumbering only. So, 
the ground states with different ~ are physically equivalent. If we deal with 
a quasicrystal (co is irrational), the ground state is twice continuously 
degenerate (parameters ~ and/~). 

The diffraction pattern is described by a formfactor 

f 
+ o o  

S(q )=  p(x) e iqXdx=2gGe-iqx" 
~o 17 

where p(x) is the electronic density, and So, takes three values only: 

~ + a/2 
SO = ~ a/2 p ( X )  e - i qx  d x  

~ a/2 

S+ = o-b~2 p(x) e-iqx dx 

~ b/2 
S = ~ a/2 p ( X )  e iqx d x  

S(q) can be calculated as in the KKL theory ~2) 

(24) 

S (q )=  ~ Inl,n26(q-qlnl-q2n2) 
n l , n 2  E Z 

q~nl +q2n2=2~ hi +wn2 
a + w b  = Qll (25) 

2rt ( h~ h_./) b 
-- - - -  --}-- , 1 9 = -  

Q •  (vw) 1/2 + 1/(l)w) 1/2 a a 

/~,n2 = I(Q• 

Note that Eq. (25) differs slightly from the result given in Ref. 2. In the 
KKL theory the atomic coordinates x,  are obtained by projecting the sites 
of the square lattice onto the x axis: 

x ,=hlcosO+n2s inO+cons t  (tg 0 = w )  

This expression coincides with Eq. (23) only if b/a= w. In the present 
model the parameters v = b/a and w = N~/NA are independent, whereas in 
the KKL theory v = w. Despite the second parameter, the diffraction pat- 
tern remains qualitatively the same. Namely, if w is irrational, the spectrum 
consists of the 6-function Bragg peaks, which fill the qaxis everywhere 
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densely. Note that this property emerges only to the irrationality of the 
concentration w; the parameter v = b/a may be either rational or irrational. 

Consider the Schr6dinger equation for a wave function O(x) of an 
electron moving in a quasiperiodic potential V(x) created by a chain of 
hard spheres: 

-d2tp/dx 2 + V(x) O(x) = EO(x) (26) 

Since A and B atoms are undeformable, the potential V(x) is construc- 
ted by matching two potentials VA(X), X~ [0; a], and VB(x), x e  [0;b].  
The order of alternation of VA and VB is the same as the order of alter- 
nation of A and B. It is useful to introduce two monodromy matrices ira 
and T B [they belong to SL(2; N)]: 

( O,(a) )=Tg(~(O)~ (O(b)~ = T. ( 0 ( 0 ) ~  (27) 
r (a)) \4-,'(o))' \,p'(b)) ',,0 (o)) 

{T A can be obtained by solving Eq. (26) with V(x) = VA(X ) on [0; a]; in 
the case of TB; V(x)= VB(X), x e  [0; hi. The localization properties of O(x) 
are governed by infinite products 

+ o o  

T _ + = [ I  T~ m 
m - - O  

where {am} describes a tubular configuration. For this problem it is useful 
to take {am} in the form given by Assertion 4. Denote 

(Pn + qn) 

m = 0  

where qff(pn+qn)=C% is the nth truncated continued fraction (11). 
Equation (19) gives rise to the following recurrence rule: 

T(~ TA, T(ll= Tc, ru TS,-C, 
(28) 

T(n)=(T(n-1))c, TIn-2)(T(n 1))sn c, 

where C, are defined in Eq. (16). This problem remains unsolved. The par- 
ticular case of Eq. (28), namely, o =  (x /5 -1) /2 ,  ~=~o, has been exten- 
sively studied. (9'18'19) In this case Eq. (28), according to Corollary 2, 
reduces to 

T(~) = T(n- 2)T(n- 1) (29) 

According to Refs. 9, 18, and 19, the wave function obtained by Eq. (29) is 
critical: it is neither localized nor extended. The spectrum of Eq. (26) is 
singular continuous; allowed energies form a Cantor set of zero measure. 
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4. GENERAL CASE 

In this section we study states ({0,}; {xn}) of a chain that minimizes 
the energy (3) with interatomic potentials UAA(X), UBB(X), and UAB(X) 
shown in Fig. 2. In the framework of the two-stage minimization, we 
should take an arbitrary configuration {on} and then find corresponding 
{xn} and ~ ( { o , } ) .  Unfortunately, we cannot carry out this scheme com- 
pletely. We have found {xn({an})} and ~ ( { a n } )  not for all {~n}, but only 
for tubular configurations. The TCs are parametrized by e (Section 2), so 
we obtain {xn(e)}, ~ ( e ) ,  e e  S 1. Formulas for {x,(e)} will be given below. 
Now the energy: 

Assertion 9. Denote 

~,~ e ) =  min Jt~({on }; {xn}), 
(x.} 

{an} = TC(co; e) 

Then, for any co, el,  e2, we have ~(co;  el) = ~r176 e2). 
Thus, we shall investigate a family of states ({an(e)}, {xn(e; fl)}), 

where e varies in S ~ and co is fixed. The states have the same energy and 
they are at least metastable. The second parameter/3 describes simply chain 
translation, xn --* x,  + ft. We cannot find out whether or not these states are 
ground states [because we do not know ~({crn}) for all {0,}], but we 
believe that the both alternatives are possible: 

Conjecture. If some conditions imposed on the interatomic poten- 
tials UAA(X), UBB(X), and UAB(X) are satisfied, then the states ({cr,}; {xn}), 
where {en} are tubular configurations, are ground states. 

We can give two arguments for this conjecture. First, if the atoms are 
almost hard spheres, the elasticity is a small correction. So the energy of 
almost hard spheres is close to the energy of hard spheres. The latter takes 
its absolutely minimal value on tubular configurations (Assertion 7). It is 
reasonable to believe that a small correction does not change the situation 
drastically. Second, there is an analogy with the Frenkel-Kontorova 
model, where there is also two-stage minimization and some limit case 
( V ~  oe) reduced to a 1D lattice gas. In that model Aubry (5'6) has proven a 
theorem which states that if one compares the "lattice gas" limit case 
(described by {0,} only) and the general case (described by ({on}, {x ,} ) ,  
then both {on} coincide. The present model is not equivalent to the 
FK model, but a qualitative analogy holds. 

If the concentration co is irrational and {0,} =TC(co; e),.we call the 
state of a chain (characterized by {on}, {x,}) a quasicrystalline state. The 
main property of this state is that all the physical values depending on the 
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x coordinate (or equivalently on the number n) are quasiperiodic functions 
of ?7: 

An = A(nco + or) 

As an example, consider interatomic spacings 

dn= x,+ l -  x,  (30) 

The quasiperiodicity can be described by two equivalent methods. The first 
way is 

dn=d(mo+~),  d(t): S I - * E  1 (31) 

The second one is geometrical. Consider the broken line in the tube 
(Fig. 4) and change one integer n by two (nonindependent) integers nl,  n 2 
(Assertion 2): dn = dn,,,2 = d(r), r e Z 2. The quasiperiodicity implies that d(r) 
depends on the perpendicular coordinate y + ~ D  only. The function 
d(y + ~D) differs from d(t) in Eq. (31) only by the dilation of the argument 
by.D times. Below we try to explain why d(r) depends on y only. If we take 
into consideration only nearest neighbors, we must conclude that all AA 
bonds are equivalent. The same property holds for AB bonds. Thus, in this 
approximation d takes two values only: dAA and dAB. It is clear from Fig. 8 
that the tube can be divided into three subtubes. The sites in the inner tube 
correspond to AA bonds, those in the upper tube to BA bonds, and those 
in the lower tube to AB bonds. Thus, in this approximation d(r) depends 

Fig. 8. Fractalization of the tube giving rise to quasiperiodicity. The upper subtube contains 
BA bonds, the lower one contains AB bonds, and the inner subtube contains AA bonds. The 
latter subtube is subdivided by the three smaller subtubes 1, 2, 3. 
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on y only (Fig. 9). Then consider next nearest neighbors. Now not all AA 
bonds are equivalent; there are BAAB, AAAB, BAAA. So, dAA splits into 
two values dBAAB and dAAAB = dBAAA. The inner tube (yielding daa) can be 
divided in three subtubes. The sites in the inner part of the inner tube 
correspond to AA bonds of the BAAB type. The two other subtubes of the 
inner tubes correspond to AA bonds of the AAAB and BAAA types. Thus, 
in this approximation d(r) depends on y only and takes three values dAAAB, 
dBAAB, dAABA- Then we should consider further splitting of AA bonds into 
bonds of, say, the AB. . .  AAAB. . .  B type. This results in fractalization of 
the tube (in the y direction). Thus, d(r) depends on y only and d(y) has 
discontinuities at points y that are the boundaries of the subtubes. It can be 
easily shown that corresponding discontinuity points t are t = mco(mod 1), 
m e 7/ [cf. Eq. (7)]. The symmetry between, e.g., AAAB and BAAA results 
in the property 

d(t)=d(-t)  

If co = q/(p + q) is rational, d(t) takes p + q values only. It changes abruptly 
when t passes through one of p + q points, t = mco(mod 1), and it is con- 
stant when t varies between these points (Fig. 10). If co is irrational, 
dn=d(nco+7) is quasiperiodic. The function d(t): $ 1 ~  N~ has discon- 
tinuities at the points t = mco(mod 1), which fill the circle S 1 everywhere 
densely. This means that the image of the circle S 1 is a Cantor set in N~. It 
is also possible to establish a hierarchy of the discontinuities: the greater is 

~ ( e ) ,  

' I i I ~ -  

o -co co ~. t 

Fig. 9. The function dl~ describing interatomic distances d .=  d(no+e) in the hard- 
sphere approximation. 
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] 

, , , , , , , , , 

0 

L 

Fig. 10. 

t 

The function d(t) obtained numerically for co = 16/23. 

m, the smaller the height of the step at the point  t = m~o(mod 1). For  exam- 
ple, if U(x)~ cons t /x  y as x ~ or, then 

C(m) 
Ad(mo~) = - s g n ( m )  1 

m-S+ 

C1, m=Int[k/(1-~o)], k e Z  

C ( m ) =  C2, m=Int[k/(1-c9)]+l,  kEY_ (32) 

C3, else 
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So far we have not used the special properties of dn. The same can be said 
about any other physical value A n [the monodromy matrix T n, Eq. (41); 
the form factor of the diffraction Sn; etc.]. 

Now we try to find the function d(t). The coordinates x,  are obtained 
by the set of nonlinear equations 

~Jf  /~x. = 0 

which can be rewritten in the form 

L ..... ,(d.) 

+ [f~._,~.+,(dn_,+d.)+f~ . . . .  2(d .+dn+, ) ]  

+ [f~. 2o.+,(d. 2 + d . - , + d . ) + L .  ,~r.+2(d._,+d.+dn+,) 

+ f ~  . . . .  3(d. + dn+, +dn+2)]  + "'" = 0  (33) 

where 

f ( x )  = dU/dx 

We put dn=d(nco+~) [Eq. (31)]: 

f~(,)o(,+ ~o)+ [f~(,_~)~(t+~o)(d(t - m) + d(t)) 

+ f~(,),~t + 2~o)(d(t) + d(t + ~o))] + . . . .  0 (34) 

where a(t) is given in Assertion 3. So, a nonlinear functional equation for 
d(t) is 

L~,+k . . . .  )~(,+ko)) d(t + rio) = 0  (35) 
m = l k = i  j =  m 

Equation (35) is an exact equation. We try to solve it approximately 
for interatomic potentials with a sharp minimum, namely, [UAA(a + b)l and 
IUAB(I+a)I are small compared with IUAA(a)I and [UAB(/)I (Fig. 2). In 
this case the interatomic distance d, is set basically by the interaction of 
two nearest neighbors; the influence of the next nearest neighbors can be 
considered as a perturbation. In the zeroth order in Eq. (34) all terms 
except the first one should be omitted: fo(t)~(,+o~)(d(~ so d(~ 
takes two values only: a for AA pairs and l = ( a + b ) / 2  for AB pairs 
(Fig. 9). Note that d(~ coincides with d(t) of the hard-sphere 
approximation (Section 3). The next order of the perturbation theory can 
be obtained in the usual way: since d - d  t~ is small, we expand the first 
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term of Eq. (34), f ( d ) = f ( d ( ~ 1 7 6  (~ and substitute d(~ 
instead of d(t) into other (small) terms: 

d(t) = d(m(t) - f~(, + ko~ m~)~(t + ~o~) d(~ + j~o) 
m =2 k = l  j =  m 

x [f;,)o(,+o~)(d(~ 1 (36) 

where d(~ is shown in Fig. 9 and f'(,)~(f+o~)(d(~ takes two values 
only: Vhh=OZUaa(a)/Ox 2 if t e[1--co;co) and VAB=OZUAB(I)/~X 2 if 
t~ [0, 1 - c o ) ~  [co; 1). Equation (36) can be simplified if the Hubbard 
criterion (Assertion 5) is employed: 

k 1 
d ( ~  + , R m , or R+ +R2'  

j ~-m 2 

R + = Int(mco) �9 a + [m - Int(mco)] b 

R m = [Int(mco) + 1] a +  [ m -  Int(mco)-  1] b 

It is noteworthy that Y f ~ = l f ( R m ( t ) )  has discontinuities at the points 
t = +_co, _+ 2co,..., me). General expressions for the magnitudes of the steps 
are cumbersome, but for U ( x ) ~  C/x ~ and large m we obtain Eq. (32). 

To check Eqs. (31) and (32) we have calculated {d,} numerically. 
Interatomic potentials have been chosen in the Lennard-Jones form 
(Fig. 2): 

UAA(X) = CAA 2X-12 ; 6  ' UBB(X) = CBB 2-X"~2 ; 6  

uA.(x) = c a .  2 ~  ~ xe 

The symbolic sequence {a~} has been obtained analytically by means of 
the "tube rule" [Eq. (10)]. This sequence has fixed the order of alternation 
of A and B atoms. The atomic coordinates x~ have been found by direct 
numerical solution of the system of nonlinear equations ~?~/Ox, = 0 [we 
have not used Eqs. (35) and (36)]. Interatomic distances d~ = x , + ~ - x ,  
appear to be of the form d, = d(no  + cO, where d(t) (Fig. 10) possesses all 
the properties predicted above: it is symmetric, it is close to d(~ (Fig. 9), 
and it has discontinuities at the points t=mco(mod 1). Moreover, the 
heights of the steps are proportional to m 7 [in agreement with Eq. (32)]. 

Assuming that we know d(t), we find different physical quantities. 
First consider the average interatomic spacing 

L =  lim X N + I - - X l - -  lim 1 
U ~  c~ N U ~  ~ N dn (37) 

n--1 
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Substituting dn = d(noo + ~), we have (due to the ergodicity) 

f2 L = d(t) dt (38) 

In the hard-sphere model L(~ (a+bw) / (1  + w). In the general case the 
chain contracts and L < L (~ The average spacing L determines positions 
of the spots in the diffraction pattern. Unlike the case of hard spheres, the 
form factor S. in Eq. (26) takes infinitely many values S. = S(nco + ~), 
where S(t) has steps at the points t = mco(mod 1) (the K K L  theory takes 
into consideration only the two largest steps at the points t = _+co). The 
form factor S(q) can be expressed via the incommensurate modulation 
q~n = x . -  nL, which can be obtained from d(t): 

~o(t  + ~o)  - ~ o ( t )  = a ( t )  - L 

Substituting x.  = q0. + nL into Eq. (26), we have 

-1,-2~ (39) 

In~,n2 =--s e-iq~p(t) p(X) e iqx dx e 2z~in2t dt 

In the case of a quasicrystal (co is irrational) the spectrum consists of 
a-function peaks filling the reciprocal space everywhere densely. Since 
L < L m), the positions of the peaks differ slightly from those given by the 
hard-sphere approximation [Eq. (25) can be rewritten in the form of 
Eq. (39), but it contains L (~ instead of L].  Qualitatively, the pattern 
remains the same as in the K K L  theory. 

Now consider a localization problem for an electron wave function. 
The Schradinger equation with a quasiperiodic potential V(x) can be 
reduced to an infinite product of the monodromy matrices 

T =  l~I T~ (40) 
n = 0  

where T . e  SL(2; ~) is obtained by solving Eq. (26) on Ix . ;  x .+ 1]: 

r  Tn \~ ' (x . ) J  

Unlike the hard-sphere model, T~ takes, not two values TA and TB, but 
infinitely many values. In fact, the atoms are deformed and different A (or 
B) atoms are not equivalent. T. is a quasiperiodic function of n: 

T. = T(nco + ~) (41) 
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where T(t): $ 1 ~  SL(2; R) varies on the Cantor-type subset of SL(2; ~). 
The function T( t )  has a countable set of discontinuity points 
t=mco(mod 1) [cf. Eq. (7)]. 

There is another equation, reduces to Eqs. (40) and (41) with T( t )  of 
this type: 

-~on+ ~ + 2qL,- (pn_ 1 + V ( n c o + ~ )  q~n=Eq~ n (42) 

where V( t )  has discontinuities at the points t=mco(mod 1) (the larger m, 
the smaller the step), so V( t )  varies on the Cantor set. Peyrard and 
Aubry ~2~ have investigated numerically a particular case of Eq. (42) when 
studying the vibrational spectrum of the Frenkel-Kontorova chain in the 
state discribed by a Cantorus. Unfortunately, even for this case the 
localization problem remains unsolved. It is worthy to note that Eqs. (40) 
and (41) can be treated by means of Oseledec's multiplicative ergodic 
theorem, (21) which states that the limit 

N 1/(2N) 

T= lim T, T, 
N ~ o ~  1 I \ n = l  

exists for almost all co and ct and it defines Liapunov indices. Unfor- 
tunately, we cannot solve the localization problem. We mention it here 
only to formulate the problem correctly and point out that the recurrence 
procedures (28) and (29) can be applied to hard spheres only. The fact that 
T( t )  takes only two values TA and TB changes the symmetry of Eq. (26); 
namely, Eqs. (28) and (29) have scaling symmetry, whereas the general 
version of Eq. (26) does not possess this symmetry. Bearing in mind that 
the wave function in the hard-sphere approximation is critical (neither 
localized nor extended), (9"18'19~ we may conjecture that in a general case 
localization properties of the electron wave function can be very different 
from those obtained in the hard-sphere approximation [Eqs. (28) and 
(29)]. 

It is also interesting to investigate a phonon spectrum: 

U~,~,,(x n - x , , ) ( u ,  - Urn) = mnQ2Un 
m 

where m, = m(nco + ~); m ( t )  = m a ,  t ~ [0; co); m ( t )  = mB,  
dynamical matrix 

K n m  = U ; . a m ( X n - X m )  

= U'(no~ + d(jco + c~ 
:x)g(m~ + x) \ J=  n 

t e  [co, 1). 

(43) 

The 
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is quasiperiodic. Consider an approximation of almost hard spheres [-in 
this case the minimum of U(x) is very sharp]. The leading term should be 
obtained by keeping the nearest neighbors only and by substituting d(~ 
instead of d(t) in Eq. (93) [i.e., all A (or B) atoms are assumed to be 
identical ]: 

--YnUn+l-]-(Yn-}-Vn+l)Un--Yn inn l=mnQ2un (44) 

where vn = v(nco + ~), and 

v(t) = c,  ~d(O)tt~ d ~ ( t ) a ( t + ~ ) ~  k ]1 

takes two values only [cf. Eq. (36)]: 

VAA = 02UAA(a)/OX 2 if t ~ [1 -- CO; CO) 

v(t)=VAB=O2UAB(l)/OX 2 if t~[0;1--CO)W[-CO;1) 

Equation (44) can be reduced to an equation analogous to Eq. (28). The 
only difference is that there are four types of TA" TAAA, TBAB, TAAB, and 
TBA A. But if we consider two types of clusters: 

A = A A - . . A  B A A . . . A ,  B = A . . . A B A A . . . A  

CI SI  -- CI  CI SI  -- Ct  + 1 

there will be only two monodromy matrices Ta and T~ satisfying Eq. (28), 
where a2 = 1/w - S1 should be used instead of co. The formulas for Ta and 
T~ are trivial but cumbersome. We give here only the formulas for the 
particular case of the golden mean co = (,,/-5 - 1 )/2, e = co: 

T(n - 1)T(m 

Ta, T~ = Tg Ta 

TBAA TAAB TB, Tn = TBAn TB 

T ( n + l )  = 

To= 

T ~ =  

TBAA =( (VAA ~- YAB-mA~2)/vAAI --Vo/YAA) 

1)  0 

O 

(45) 
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Thus, in the framework of the almost-hard-sphere approximation 
according to Refs. 9, 18, and 19, the phonon spectrum is singular con- 
tinuous, the eigenfrequencies form a Cantor set of zero measure, and Un is 
neither localized nor extended. The approximate equation (44) possesses 
scaling symmetry, while the exact equation (43) does not. In a general case 
the dynamical matrix cannot be reduced to the product of two 2x  2 
matrices Tn, T~. So, due to different symmetries of Eqs. (43) and (44), the 
phonon spectrum obtained by the exact equation may be rather different 
from that obtained by the approximate recurrence procedure (44). 

Thus, we see that the K K L  theory is in some sense an approximate 
theory that takes into consideration the nearest neighbors only and con- 
siders atoms as undeformable spheres. In the framework of this theory all 
A atoms are identical, as are all B atoms (actually, the physical properties 
of an A atom depend on the environment: an A atom in, say, an AAA 
cluster differs from an A atom in an AAB cluster). In other words, the 
K K L  theory takes into consideration only the largest steps in the graphs of 
all the quasiperiodic functions An=A(n(~ + ~), which are situated at the 
points t = +_o) (cf. Figs. 9 and 10). This approximation gives the leading 
term of the perturbation theory, but we have shown that if one takes into 
account the small corrections from the distant neighbors and from the 
deformability of the chain, the situation may change. Namely, the K K L  
approach is good for the diffraction pattern, but it may be somewhat 
incorrect when one deals with electronic and phonon spectra. On any 
account, Eqs. (42) and (43) deserve special attention. 

In conclusion, we want to say why we have introduced long-range for- 
ces U(r)~ 1/r ~. It is known that in two and three dimensions it is possible 
to give examples of lattice gas models with finite-range interactions 
[U(r) = 0  for r >  r . ] ,  which have almost periodic ground states. (23'24) All 
these models form the class of models based on Berger's theorem. (22) 
Unfortunately, even 2D and 3D versions of the K K L  model do not belong 
to this class. Moreover, it is easy to show that in one dimension it is 
impossible to obtain a quasiperiodic ground state if interatomic forces have 
finite range. So, 1D quasicrystals require infinite-range forces. However the 
one-dimensional situation may differ strongly from higher dimensional 
cases, it is worth investigating it because, first, some phenomena that occur 
in one dimension may also appear in three dimensions and, second, there 
are alloys (e.g., pyrrhotite, Fel xS (25~) that are quasiperiodic in one direc- 
tion. On any account, one-dimensional quasicrystals are being extensively 
investigated. ~26) 
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